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Abstract

Community detection refers to an important graph analytics problem of finding a set of
densely-connected subgraphs in a graph and has gained a great deal of interest recently. The
performance of current community detection algorithms is limited by an inherent constraint
of unweighted graphs that offer very little information on their internal community structures.
In this paper, we propose a new scheme to address this issue that weights the edges in a
given graph based on recently proposed vertex affinity. The vertex affinity quantifies the
proximity between two vertices in terms of their clustering strength, and therefore, it is ideal
for graph analytics applications such as community detection. We also demonstrate that the
affinity-based edge weighting scheme can improve the performance of community detection
algorithms significantly.

1 Introduction

Graphs offer an effective means to explore the relations between data objects and have been
used as one of the most popular knowledge representation tools. Graph analytics has become
increasingly important in recent years as the demand for the capability to mine useful information
from an increasingly large volume of data has grown stronger. The graph analytics has found
its uses in a wide range of applications. Among these graph analytics applications, community
detection has received a great deal of attention in particular. Although there is no clear-cut
consensus on what community is, the community in a graph is often loosely defined as a subgraph
whose vertices are more densely connected to each other than to the rest of vertices in the graph.
Community detection refers to a graph analytics problem to find a set of communities within
the graph [13].

The strong interest in community detection is mainly due to the fact that the obscure struc-
tures in complex real-world graphs revealed by community detection algorithms may contain
crucial information for solving target applications. For example, communities in a social net-
work such as Facebook [12] may represent groups of friends or known associates and can be used
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for solving various important problems in social sciences. A community in a protein-protein
interaction network [19] in biology research may indicate a group of proteins that perform the
same or similar functions and can provide valuable information for drug discovery. There are
many other areas of interest where the community detection plays a key role, which include so-
cial media analysis, computer science, engineering, e-commerce, politics, national security, and
web mining, just to name a few [11, 14, 21, 9, 16, 5, 10, 1, 4, 2, 15].

Algorithms to find the communities have been studied quite extensively as well, and nu-
merous community detection algorithms have been proposed lately. Basically, these algorithms
differ from each other in measuring and identifying the edges that connect the vertices in the
same community. A divisive community detection method detects those edges connecting ver-
tices in different communities and repeatedly remove them from the graph [6, 3]. With this
method, the community structures surface after enough inter-community edges are removed.
However, the computational cost is very high since usually a large number of edges need to be
removed before the hidden community structures start to emerge. Agglomerative algorithms, on
the other hand, find communities by combining densely linked vertices (and potentially partially
identified communities) recursively. The popular Louvain algorithm [2] belongs to this class of
community detection algorithms. Spectral clustering-based methods [22] use the eigenvalues and
eigenvectors of the adjacency matrix (and its variants) of the target graph. Their computation
is also very expensive, especially for large graphs, due to the high computational cost involved in
calculating a large number of eigenpairs. There is also a class of community detection algorithms
based on random walks [27, 24]. The basic idea of these algorithms is that a set of vertices in
the same community can be found via multiple short random walks because if a random walk
visit a vertex in a community, the next vertex it visits is likely to be in the same community.
There are many other community detection algorithms reported in the literature, but we will
not discuss them here due to space limitation. Interested readers should refer to an excellent
survey on community detection algorithms by Fortunato [13] for more detailed discussion.

Most existing community detection algorithms typically take unweighted graphs as input.
A major drawback of the unweighted graphs is that they do not provide any hint with respect
to finding communities. That is, each edge in the unweighted graphs carries no information
on the clustering of its endpoints and their neighbors, other than the fact two endpoints are
related. This drawback of unweighted graphs can significantly limit the performance of commu-
nity detection algorithms. To address this issue, we propose a new edge weighting scheme that
transforms a given unweighted graph into a weighted graph whose edges contain information
pertaining to vertex clustering.

The new edge weighting scheme is based on a recently proposed vertex proximity measure
called affinity [28]. The affinity concept is motivated by an observation that using an improper
proximity metric for solving a graph analytics problem often yields poor results [25], and there-
fore, for a proximity measure to be effective it must be defined within the context of the intended
application. Vertex affinity is designed specifically for community detection. Unlike other exist-
ing metrics, the affinity quantifies the proximity between any two vertices in a graph in terms
of their clustering strength, which is a strong indication of thether or not they are in the same
community. This makes the affinity an ideal vertex proximity measure for community detection,
since it enables a community detection algorithm to select the vertices that are most likely to be
in the same community. A framework to efficiently compute the vertex affinity is also developed



in [28].
A simple affinity-based edge weighting scheme is developed in this work. Three simple

methods to realize the clustering strength between two vertices are used in the edge weight-
ing scheme. We applied the edge weighting scheme to the so-called college football graph, an
extensively studied real-world graph with clearly defined ground truth, and evaluated the perfor-
mance of a state-of-art community detection algorithm on the weighted graph. Our results show
that the simple affinity-based weighting scheme can improve the performance of the community
detection algorithm by as much as 30% in common modularity metric. We also show that the
edge weighting scheme enhances the community detection quality even for graphs with fuzzy
community structures.

The paper is organized as follows. We provide preliminaries in Section 2. Vertex affinity
and its computation framework are described in Section 3. The use of the affinity-based edge
weighting scheme with the popular Louvain algorithm is presented in Section 4. The results
from the empirical study are discussed in Section 5. Conclusions are drawn in Section 6.

2 Preliminaries

Graph G = (V,E) consists of a set of vertices and a set of edges, denoted by V and E, respec-
tively. Given an edge e = (u, v) ∈ E, vertex v is said to be adjacent to vertex u and vertices u
and v are said to be incident to the edge e (an edge e = (u, v) is also denoted by e(u, v)). A set
of vertices that are adjacent to vertex u is called the neighbors of u and denoted by Nu. If each
edge represents an ordered pair of vertices, the graph is called directed. Otherwise, it is called
undirected. A graph is complete if any two vertices in the graph are connected by an edge.

The vertices and edges also can have weights, where the weight of a vertex v and an edge
e(i, j) are denoted by wv and wij , respectively. A graph that has weighted edges is called a
weighted graph. An unweighted (or binary) graph is a graph in which all edges have the unit
weight of 1.

A path from a source vertex s to a destination vertex t is a sequence <v0, v1, . . . , vk> such
that s = v0, t = vk and (vi−1, vi) ∈ E, for i = 1, 2, . . . , k and is denoted by p(s, t), The length of
the path in an unweighted graph is the number of edges in the path (k). For a weighted graph,
the length is the sum of the weight of the edges in the path. Two paths are independent if they
do not share common vertices except the source and destination vertices. Minimum independent
shortest paths between s and t refer to a set of all possible independent shortest paths between
s and t that gives the minimum total weight sum.

Graphs, either weighted or unweighted, can be represented as a matrix. The adjacency
matrix of a given graph G = (V,E) is a |V | × |V | matrix M = (mij) such that mij = wij if
(i, j) ∈ E and mij = 0 otherwise. By di =

∑|V |
j=1wij , we denote the degree of a vertex i.

3 Vertex Affinity for Community Detection

A new vertex proximity concept called affinity for community detection was introduced re-
cently [28]. The design of the affinity is motivated by an observation that using an improper



proximity metric for solving a graph analytics problem often yields poor results [25] and there-
fore, for any proximity measure to be effective it must be defined within the context of the
intended applications. For community detection, the proximity between vertices should be mea-
sures in terms of their clustering strength, which is a strong indication of those vertices belonging
to the same community. Measuring the clustering strength accurately and efficiently is a key
challenge.

The clustering strength between any two vertices in given graph should be high if they are
connected by many short paths, because if any two vertices are in the same community, they
are likely to be connected to many common vertices in the same community via short paths.
Furthermore, the overall clustering strength between two vertices is affected by that of those
vertices on the paths connecting them, because if two vertices are in the same community, the
vertices on the paths connecting them are also likely to be in the same community and hence
should also have high clustering strength. The affinity is defined in a way to capture these
aspects of the clustering strength.

Vertex affinity is defined as follows. Denoting the clustering strength of an edge as ec(e(u, v)),
the the resistance of an edge e, denoted by r(e), is defined as

r(e) = 1/ec(e). (1)

Given a path p = <v0, v1, · · · , vk−1>, the path resistance for a path p is defined as

R(p) =
k−1∑
i=1

r(e(vi−1, vi)). (2)

Let P (s, t) denote the set of minimum independent shortest paths between s and t. The affinity
between vertices s and t, denoted by A(s, t), is defined as

A(s, t) =
1∑

p∈P (s,t)
1

R(p)

. (3)

Readers should note that we omit detailed discussion of the edge clustering strength from
the definition of the affinity. That is because the definition and computation of the clustering
strength of an edge vary greatly depending on data and intended applications. Here, we adopt
three simple methods to quantify the clustering strength of an edge and refer to the quantified
clustering strength of the edge as the edge clustering coefficient. These methods are designed
to be simple, ease to compute, and accurate. Furthermore, they only consider locally available
information to compute the edge clustering coefficients. This not only reduces the computational
overhead, but can improve the accuracy of a community detection algorithm, as vertices in a
community typically have very short geodesic distance.

The first method is based on the standard vertex clustering coefficient, which is a measure of
the clustering strength of vertex [26]. We chose the vertex clustering coefficient as basis because
it is easy to compute and can measure the clustering strength of a vertex with its neighbors
fairly accurately. The clustering coefficient of vertex v, cc(v), is defined as

cc(v) =
|{e(u,w) : u,w ∈ Nv, e(u,w) ∈ E}|

dv · (dv − 1)
. (4)



We simply take the average of the vertex clustering coefficients of the endpoints of an edge as
its edge clustering coefficient. That is, the clustering coefficient of an edge e(u, v), ecc(e(u, v))
= cc(u)+cc(v)

2 . We call this approach the Average method.
The next edge clustering coefficient calculation method is called the Joint method. Here,

the edge clustering coefficient e(u, v) is defined as

ecc(e(u, v)) =
|{(x, y)|x, y ∈ J, e(x, y) ∈ E}|

|J | · (|J | − 1)
, (5)

where J = Nu ∪Nv is the union of the vertices adjacent to either u or v. That is, in the Joint
method the edge clustering coefficient of an edge e(u, v) is defined as the density of a subgraph
formed by the vertices that are adjacent to either u or v.

The last approach we adopt for the computation of the edge clustering coefficient is what we
call Triangular method and was proposed in [20]. Basically, the Triangular method calculates
the clustering coefficient of an edge as the ratio of the number of triangles that contain the given
edge to the number of all possible triangles that can be constructed on given edge. More formally,
the edge clustering coefficient ecc(e(u, v)) is

ecc(e(u, v)) =
zu,v + 1

min(du − 1, dv − 1)
, (6)

where zu,v is the number of triangles that contain the edge e. We discuss the computation of
the affinity in more detail in following.

Assuming that each edge in given graph is assigned its edge clustering coefficient, its inverse,
called edge resistance is assigned to each edge as its weight. This is necessary to ensure that
the affinity between two vertices decreases numerically as the clustering strength between them
increases. Once the resistance of each edge is determined, then the given graph is reduced to
a network of resistors, each of which is a measure of the affinity. The affinity between any two
vertices can be modeled as the total resistance between them as shown in Equation (3). This can
be computed using Kirchoff’s circuit laws, but in our framework a heuristic approach is adopted
for its computation, because solving the Kirchoff’s laws is computationally expensive, and more
importantly, this heuristic approach tends to limit the ill effect of remote affinity values.

Vertex affinity is computed by using the minimum independent shortest paths. Finding
minimum independent shortest paths is NP-hard, so a greedy method is used. In this heuristic,
given two vertices s and t, the shortest path with minimum path resistance is found using the
Dijkstra’s algorithm [7]. Then, all the vertices on this path except s and t are marked invalid.
Dijkstra’s algorithm is invoked again to find next shortest path that consists of only valid vertices.
This process is repeated until there exists no path connecting s and t. This set of independent
shortest paths conceptually forms a combination of series and parallel resistance circuits. Its
total resistance can be computed by simple circuit theory formulas as specified in Equations (2)
and (3) and represents A(s, t). Pseudo code for the framework is given in Algorithm 1.

The strengths of the vertex affinity and its computation framework are as follows.

1. Since vertex affinity measures the proximity between vertices in terms of their clustering
strength, it provides proximity values that are closely related to community detection,
in contrast to other existing metrics. Therefore, any community detection algorithms



Algorithm 1 Algorithm for Affinity Computation
1: Input: Graph G = (V,E), where V and E are a set of vertices and edges, and two vertices
s and t such that s, t ∈ V

2: Output: Affinity between s and t, A(s, t)

3: for ∀e = (u, v) ∈ E do
4.1: Compute edge clustering coefficient ecc(e)
4.2: Compute edge resistance r(e) = ecc(e)−1

end for
4: P = ∅
5: Find the shortest path p = <s, v1, . . . , vk−2, t> using Dijkstra’s algorithm
6: while p 6= null do

7.1: P = P ∪ p
7.2: ∀v ∈ p such that v 6= s, t, V = V − v
7.3: Find the shortest path p = <s, v1, . . . , vk−2, t> using Dijkstra’s algorithm

end while
7: l = 0
8: for each pi ∈ P do

9.1: Let pi = <v0, v1, . . . , vk−2, vk−1>, where v0 = s and vk−1 = t
9.2: Compute R(pi) =

∑k−1
j=1 r((vj−1, vj)), where (vj−1, vj) ∈ E

9.3: l = l +R(pi)−1

end while
9: A(s, t) = l−1



that takes an input graph with affinity-based weights can find community structures more
accurately.

2. The affinity is extensible and flexible in that any measures of edge clustering strengths
can be used, depending on the intended graphs and specific applications, in computing
the affinity values. Due to such extensibility and flexibility, the affinity measures can be
applied to solving a wide range of graph analytics problems.

3. The computation of the affinity values is relatively inexpensive compared to other metrics,
as they can be computed via simple heuristic approach.

4 Community Detection by Louvain Algorithm with Affinity-
based Edge Weighting

We claim that the performance of many existing community detection algorithms can be en-
hanced substantially by assigning each edge a weight derived from the vertex affinity. For
validation, we conducted comprehensive empirical research on the performance impact of the
affinity-based weighting.

Community detection algorithm needs to be able to process weighted graphs in order to take
advantage of the weighting scheme. Many community detection algorithms that were originally
designed for binary graphs, however, can be easily modified to handle weighted graphs. For
example, algorithms based on random walks, such as recently proposed DEMON algorithm [8],
can be modified for weighted graphs by adjusting the random walk probability to be proportional
to the edge weights.

We selected a state-of-art community detection algorithm, commonly known as the Louvain
algorithm [2] as baseline algorithm in our experiments. We chose this algorithm mainly because it
is simple, fast, and accurate. Due to these advantages, the Louvain algorithm has been accepted
as a de facto standard algorithm for community detection in the research community and widely
used for solving various applications. Moreover, due to the highly accurate results obtainable
with the Louvain algorithm, it is difficult to even marginally outperform this algorithm.

The Louvain algorithm is basically a greedy method that finds communities by finding a local
maxima of an objective function based on the modularity [14, 18], which provides a density-based
measure on the quality of a community. It is also agglomerate, as it finds final communities by
merging vertices. The Louvain algorithm works as follows.

Given a graph, the algorithm starts with singleton communities, each of which contains a
single vertex as its member. The algorithm proceeds through a series of passes, within which
the algorithm iterates through two phases repeatedly. In the first phase, for each vertex the
algorithm considers all of its neighbors and computes the modularity gain that can be obtained
by moving the vertex from its current community to the community of one of its neighbors. The
vertex is moved to a community that maximizes the modularity gain, but only when the gain
is positive. During each move, the vertex is removed from its current community and merged
to the new community. This process is repeated for all vertices in sequence until no vertex can
be moved. In the second phase, the algorithm constructs a new graph whose vertices are the
communities computed in the first phase. The edges are assigned new weights that are the sum



of the weights of the edges between vertices in the computed communities. Once the new graph
is constructed, then the first phase of the algorithm can be applied to the newly built graph
in the next pass. The passes are iterated until the maximum modularity obtained cannot be
improved by more than a given threshold value.

In our affinity-based edge weighting scheme, we assign each edge a new weight that is derived
from the affinity between its two endpoints. The edge weighting is performed on the unweighted
input graph only once before the Louvain algorithms is invoked. Since the Louvain algorithm
finds community structures by maximizing its objective function (i.e., modularity), an edge with
higher clustering strength, which translates into a smaller affinity value, should be given a larger
weight. We adopt a straightforward approach to compute the edge weights: taking the inverse
of the edge’s affinity value. More formally, we compute the weight of an edge e(u, v), w(e(u, v)),
as

w(e(u, v)) =
β

A(u, v)α
, (7)

where A(u, v) denotes the affinity between endpoints u and v, and α and β are given parameters.
In this method, the parameters α and β control the effect of an edge weight. In this study,
however, we simply use the reciprocal of affinity values (i.e., α = β = 1), because finding proper
α and β values for optimal performance is highly data-dependent.

5 Experimental Results

We demonstrate that the performance of community detection algorithms can be enhanced
substantially by the simple affinity-based edge weighting scheme discussed in Section 4 through
an empirical study, where we evaluate the performance of the Louvain algorithm with the edge
weighting scheme. In this evaluation, we use what is commonly known as the NCAA Division
I-A Football graph, a well-studied real-world graph. We chose this graph mainly because it
offers clearly defined ground truth communities, and therefore, we can objectively evaluate the
quality of communities computed by community detection algorithms. The graph consists of
115 vertices (teams) and 616 undirected edges. Each edge in this graph indicates that the two
teams represented by its endpoints have played a game with each other. The teams and the
conferences they belong to are described in Table 1, where the teams and the conferences are
identified by unique IDs.

Tables 2 to 5 report the results from the comparison of the computed communities and the
ground truth for different affinity calculation schemes. The accuracy of the computed communi-
ties is measured by standard F-score [23]. For clarity, we only report positive F-score values in
the tables. An F-score value of 1.0 indicates a perfect match between the computed communities
and the ground truth communities. A set of communities computed by any community detec-
tion algorithms is considered ideal if it satisfies certain criteria. First, the closer the number
of communities computed is to the number of communities in the ground truth, the higher the
accuracy of the computation is. We also consider the quality of computed communities to be
high if the comparison of the computed communities to the ground truth communities yields
high statistical similarity measure. Finally, if the input graph contains a community of outliers,
then the comparison of this community to the ground truth communities should return low



statistical similarity values.
We first evaluate the performance of the Louvain algorithm with the original unweighted

football graph and report the results in Table 2. Overall, the communities identified by the
Louvain algorithm are relatively accurate, as indicated by high F-score values, with the exception
of the ones in the last row of the table. The last community (11) in the ground truth is comprised
of 8 independent teams. Since these teams do not belong to any conferences, any subgraphs
they form lack strong community structure, and therefore, it is extremely difficult to group them
together as a separate community. In fact, it can be considered that the Louvain algorithm
correctly labels the independent teams as outliers by assigning them relatively low F-scores.
The fact that such high accuracy is obtainable with the Louvain algorithm makes it very hard
to even marginally outperform this algorithm.

However, the Louvain algorithm also has its limitations. As shown in the table, the Louvain
algorithm identified 10 communities. Although this number is close to the actual number of
communities in the ground truth, only six of them are perfect matches. Furthermore, some of
the computed communities do not have high F-score numbers when compared to the ground
truth communities, indicating that they do not have strong community structures. For example,
the fourth computed community (3) is similar to two ground truth communities, 4 and 7, as
both entries have relatively high F-score values, 0.60 and 0.73 respectively. Also, the table shows
that the independent conference (11) is similar to one of the computed communities (5) with
the F-score number of 0.40. Since this computed community is likely to be the ground truth
conference 9 (Southeastern Conference) as indicated by high F-score value of 0.83, the F-score
for the ground truth conference 11 should be very low.

We repeat the above experiment with the football graph with edge weighting. With the edge
weighting, each edge in the original graph is assigned a new weight computed by the method
described in Equation (7). This implies that the weighted graph can have edges that are not
present in the original graph (that is, the weighted graph becomes a complete graph) as we can
measure the affinity between any nonadjacent vertices using our framework. The results are
reported in Tables 3 to 5.

The accuracy of the communities detected by the Average affinity computation method is
evaluated in Table 3. Like the unweighted case, the Louvain algorithm found 10 communities, six
of which are perfect matches, for the weighted graph. Also, the comparison of the community of
independent teams (community 11) exhibits low F-scores, indicating that none of the computed
communities match to these outliers. However, with the weighted graph the F-score values for
the last row (for the independent teams) are smaller than those for the unweighted graph. This
indicates that the Louvain algorithm can find better-structured communities with the weighted
graph. The F-score obtained by using the Joint affinity calculation method is almost identical to
those from the Average method. This is probably due to the very strong community structures
in the football graph which results in these two affinity calculation methods returning affinity
values that are proportional to each other.

Table 5 shows the F-score results for the weighted football graph, when the Triangular
affinity computation method is used. The results in the table show that this edge weighting
enhances the performance of the Louvain algorithm considerably. First, the number of com-
munities detected is in perfect accordance with the ground truth, since the Louvain algorithm
found 11 communities (considering the independent teams as outliers). Furthermore, the com-



munities detected are highly accurate and close to the ground truth. The Louvain algorithm
identified eight communities correctly as indicated by F-score values of 1.0. Even the imperfect
communities are very close to real-world communities as they has very high F-scores. Just like
in the previous experiment, the outlier community of independent teams (11) have low F-scores
with the computed communities.

Table 6, in which the global modularity of the graph formed by the final communities [2]
are listed, provides strong evidence that the affinity-based edge weighting improves the perfor-
mance of the Louvain algorithm considerably. As can be seen in the table, the modularity of
final communities improves by 29% when the graph is weighted with the Triangular method,
compared to the unweighted case. Measuring the quality of communities using the modularity
measure is not always valid, since the modularity tends to increase as the number of communities
decreases. In this case, however, the number of communities detected for the weighted graph is
greater than that for unweighted graph, validating the modularity results.

As stated earlier, the college football graph has been widely studied in the literature mainly
due to the availability of ground truth. With this graph, however, it is challenging to evalu-
ate the effectiveness of community detection schemes, because the graph has very well-defined
community structure that is easier to detect than that in other real-world graphs. In following
experiments we perturb the community structures in this graph by adding and/or removing
some random edges in order to make the communities harder to find, so that we can evaluate
how the affinity-based edge weighting scheme performs in more realistic settings. The results
are presented in Figures 1 to 3.

Figure 1 presents the changes in modularity of the computed communities as more edges are
added to the original graph. Adding random edges to a graph dilutes the community structure
in the graph and hence, makes it harder to detect. This is clearly shown in the Figure 1, where
the overall modularity values decrease as more edges are added. The performance of the Louvain
algorithm without weighting suffers most. As shown in the figure, the modularity of computed
communities decreases from 0.6 to 0.38 (roughly 38% reduction) for unweighted graphs when
616 new edges (exactly 50% of the number of edges in original graph) are added. With the
weighting, on the other hand, the Louvain algorithm obtains higher overall modularity. For the
graph weighted with affinity computed by Average method, the Louvain algorithm maintains
higher modularity compared to the unweighted graph. Edge weighting by the Joint method
exhibits the similar performance as the one with Average method.

Edge weighting by the Triangular method achieves the best performance. The modularity
obtained by this weighting scheme is as much as 35% higher than the unweighted case as shown
in the figure.

Similarly, Figure 2 shows the modularity of the computed communities as more edges are
removed from the original graph. Removing edges from a graph does not have as significant
impact on the modularity as does adding edges, especially for well-structured graphs like the
football graph, since quite a significant number of edges need to be removed in order to destroy
the existing community structures [17]. This can be clearly seen in Figure 2, where the mod-
ularity values do not vary as much as in Figure 1. For the unweighted graph, removing edges
actually improves the modularity in some cases, probably because the removal of some edges re-
duces noise while maintaining the community structure. The figure shows that the affinity-based
weighting via the Triangular method still achieves the best performance. With this weighting
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Figure 1: The modularity of communities computed by the Louvain algorithm for unweighted
and weighted football graphs to which a certain number of edges are added randomly. The
graph is then fully weighted, resulting in a complete weighted graph.
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Figure 2: The modularity of communities computed by the Louvain algorithm for the unweighted
and weighted football graphs from which a certain number of edges are removed randomly. The
graph is the fully weighted, resulting in a complete weighted graph.

scheme, the Louvain algorithm improves the overall modularity by at least 20%.
In the next experiment, we modify the graph by adding new random edges, while removing

the exactly same number of edges so at the end the graph has the same number of edges as the
original graph. The combination of addition and removal of edges expedites the deconstruction of
the community structures in the graph and hence should result in poorer modularity results. This
can be clearly seen in Figure 3, where the modularity curves decline more rapidly than the case
where edges are only added. However, the Louvain algorithm with the edge weighting scheme still
outperforms the one without the edge weighting. The edge weighting by the Triangular method
still achieves the best performance, improving the modularity by as much as 34% compared to
the unweighted graph.

6 Conclusions

The performance of community detection algorithms is limited by the inherent constraint of the
fact that unweighted graphs offer very little information on their internal community structures.
In this paper, we propose a new scheme that weights the edges in a given graph based on
the recently proposed vertex affinity concept to overcome this limitation. Unlike other existing
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Figure 3: The modularity of communities computed by the Louvain algorithm for unweighted
and weighted football graphs, where a certain number of edges are added and removed randomly.
Here, the same number of edges are added and removed.



metrics, the affinity quantifies the proximity between any two vertices in a graph in terms of their
clustering strength. This makes it an ideal vertex proximity measure for community detection,
because it helps a community detection algorithm to select the vertices that are most likely to
be in the same community.

We propose a simple edge weighting scheme that derives edge weights from the vertex affinity
measures. We applied the edge weighting scheme to the college football graph, an extensively
studied real-world graph with clearly defined ground truth. We ran the state-of-art Louvain
algorithm on the test graph preprocessed by the proposed edge weighting scheme and measured
the performance. The results show that the affinity-based edge weighting scheme can improve
the modularity of final communities computed by the Louvain algorithm by as much as 30%.
Further, we also show that the edge weighting scheme enhances the community detection quality
even for graphs with fuzzy community structures.
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Table 1: Description of the graph for the NCAA Football conferences and conference members
in year 2000. There are 115 vertices (teams) in 12 conferences in the graph, including a group
of independent teams. Each team is represented by a unique ID. ID for conferences are given in
paranthesis.

Southeastern (9) Big 12 (1) Mid American (6)
27 Florida 40 Colorado 99 Marshall
95 Georgia 72 Iowa State 18 Akron
70 South Carolina 52 Kansas 71 Ohio
76 Tennessee 3 Kansas State 61 Miami (Ohio)
62 Vanderbilt 102 Missouri 31 Bowling Green State
56 Kentucky 74 Nebraska 34 Buffalo
17 Auburn 107 Oklahoma State 54 Kent State
96 LSU 98 Texas 14 Western Michigan
87 Ole Miss 81 Texas A&M 85 Toledo
65 Mississippi State 10 Baylor 12 Northern Illinois
113 Arkansas 84 Oklahoma 26 Ball State
20 Alabama 5 Texas Tech 43 Eastern Michigan

38 Central Michigan
Big 10 (3) Pac 10 (8) Conference USA (5)

32 Michigan 51 Washington 57 Louisville
39 Purdue 108 Oregon State 44 East Carolina
13 Northwestern 68 Oregon 92 Cincinnati
47 Ohio State 77 Stanford 75 Southern Mississippi
15 Wisconsin 21 UCLA 112 Alabama Birmingham
60 Minnesota 8 Arizona State 86 Tulane
6 Penn State 22 Arizona 66 Memphis
2 Iowa 7 Southern California 48 Houston
64 Illinois 78 Washington State 91 Army
100 Michigan State 111 California
106 Indiana

ACC (0) Big East (2) Western Athletic (10)
1 Florida State 101 Miami (Florida) 110 TCU

103 Clemson 19 Virginia Tech 83 UTEP
37 Georgia Tech 55 Pittsburgh 46 Fresno State
33 Virginia 35 Syracuse 73 SanJose State
25 North Carolina State 29 Boston College 88 Tulsa
89 North Carolina 30 West Virginia 49 Rice
109 Maryland 79 Temple 114 Hawaii
105 Wake Forest 94 Rutgers 53 SMU
45 Duke 67 Nevada

Mountain West (7) Independent (11) Big West (4)
41 Colorado State 82 Notre Dame 28 Boise State
93 Air Force 36 Central Florida 90 Utah State
104 UNLV 63 Middle Tennessee State 50 Idaho
0 Brigham Young 42 Connecticut 69 New Mexico State
4 New Mexico 58 Louisiana Tech 11 North Texas
23 Utah 97 Louisiana Lafayette 24 Arkansas State
9 San Diego State 59 Louisiana Monroe
16 Wyoming 80 Navy



Table 2: Comparison of the communities computed by the Louvain algorithm with the ground
truth communities in terms of the standard F-scores for the 2000 NCAA college football graph
described in Table 1. The original graph is unweighted. Only positive F-score values are reported
in the table for clarity.

Ground Computed Communities
Truth 0 1 2 3 4 5 6 7 8 9

0 1.00
1 1.00
2 0.89
3 1.00
4 0.60
5 1.00
6 0.96
7 0.73
8 1.00
9 0.83
10 1.00
11 0.40 0.09 0.22

Table 3: Comparison of the communities computed by the Louvain algorithm with the ground
truth communities in terms of standard F-scores for the 2000 NCAA college football graph
described in Table 1. Only positive F-score values are reported in the table for clarity. The
graph used in this experiment is a complete graph that is constructed from the affinity matrix
computed for the original graph. The affinity measures are calculated by the Average method
in this experiment.

Ground Computed Communities
Truth 0 1 2 3 4 5 6 7 8 9

0 1.00
1 1.00
2 0.89
3 1.00
4 0.60
5 1.00
6 0.93
7 0.73
8 1.00
9 0.86
10 1.00
11 0.17 0.22 0.33



Table 4: Comparison of the communities computed by the Louvain algorithm with the ground
truth communities in terms of standard F-scores for the 2000 NCAA college football graph
described in Table 1. Only positive F-score values are reported in the table for clarity. The
graph used in this experiment is a complete graph that is constructed from the affinity matrix
computed for the original graph. The affinity measures are calculated by the Joint method in
this experiment.

Ground Computed Communities
Truth 0 1 2 3 4 5 6 7 8 9

0 1.00
1 1.00
2 0.89
3 1.00
4 0.60
5 0.82
6 0.93
7 0.73
8 1.00
9 1.00
10 1.00
11 0.17 0.38 0.22



Table 5: Comparison of the communities computed by the Louvain algorithm with the ground
truth communities in terms of standard F-scores for the 2000 NCAA college football graph
described in Table 1. Only positive F-score values are reported in the table for clarity. The
graph used in this experiment is a complete graph that is constructed from the affinity matrix
computed for the original graph. The affinity measures are calculated by the Triangular method
in this experiment.

Ground Computed Communities
Truth 0 1 2 3 4 5 6 7 8 9 10

0 1.00
1 1.00
2 0.89
3 1.00
4 1.00
5 1.00
6 0.93
7 1.00
8 1.00
9 0.86
10 1.00
11 0.17 0.22 0.33

Table 6: The comparison of the modularity of the communities computed by the Louvain algo-
rithm. The modularity values are computed for original unweighted graph as well as complete
graphs, weighted by using different affinity calculation methods.

Weight Scheme Modularity
Unweighted 0.604346
Edge Average 0.67525
Weighted Joint 0.685688

Triangular 0.778116


